找回密码
 立即注册
算法Chapteralgorithmand | 数据结构 2022-10-27 184 0star收藏 版权: . 保留作者信息 . 禁止商业使用 . 禁止修改作品
内容简介本书浅显易懂,全面地介绍了计算机算法。对每一个算法的分析既易于理解又非常风趣,并坚持了数学严谨性。本书的方案方案全面,适关于多种用处。涵盖的内容有:算法在计算中的效果,概率分析和随机算法的介绍。本书专门评论了线性方案,介绍了动态方案的两个使用,随机化和线性方案技术的近似算法等,还有相关递归求解、快速排序中用到的区分方法与希望线性时刻次序统计算法,以及对贪心算法元素的评论。本书还介绍了对强连通子图算法正确性的证实,对哈密顿回路和子集求和问题的NP完全性的证实等内容。全书提供了900多个练习题和思考题以及叙说较为具体的实例研究。本书内容丰富,对本科生的数据框架课程和研究生的算法课程都是很实用的教材。本书在读者的行业生涯中,也是一本案头的数学参考书或工程实践手册。目录第一部分基础知识导言第1章算法在计算中的效果1.1算法1.2作为一种技术的算法第2章算法入门2.1插入排序2.2算法分析2.3算法方案2.3.1分治法2.3.2分治法分析第3章函数的增加3.1渐近记号3.2规范记号和常用函数第4章传归式4.1代换法4.2递归树方法4.3主方法4.4主定理的证实4.4.1取正合幂时的证实4.4.2上取整函数和下取整函数第5章概率分析和随机算法5.1招聘问题5.2指示器随机变量5.3随机算法5.4概率分析和指示器随机变量的进一步使用5.4.1生日悖论5.4.2球与盒子5.4.3序列……第二部分排序和统计学导言第6章堆排序第7章快速排序第8章线性时刻排序第9章中位数和次序统计学第三部分数据框架第10章基本数据框架第11章散列表第12章二叉搜索树第13章红黑树第14章数据框架的扩展第四部分高档方案和分析技术导论第15章动态方案第16章贪心算法第17章平摊分析第五部分高档数据框架概述第18章B树第19章二项堆第20章斐波那契堆第21章关于不相交集合的数据框架第六部分图算法导言第22章图的基本算法第23章最小生成树第24章单源最短途径第25章每对项点间的最短途径第26章最大流第七部分算法研究问题选编导言第27章排序网络第28章矩阵运算第29章线性方案第30章多项式与快速傅里叶转换第31章相关数论的算法第32章字符串匹配第33章计算几何学第34章NP完全性第35章近似算法第八部分附录:数学基础知识导言A求和B集合等离散数学框架C计数和概率参考文献
算法导论第二版.pdf

(This book is easy to understand and comprehensively introduces computer algorithms. The analysis of each algorithm is easy to understand and very interesting, and adheres to mathematical rigor. The scheme of this book is comprehensive and applicable to multiple purposes. The contents include: the effect of algorithm in calculation, probability analysis and introduction of random algorithm. This book specifically reviews linear schemes, introduces two uses of dynamic schemes, randomization and approximate algorithms of linear scheme technology, as well as differentiation methods and desired linear time order statistics algorithms used in related recursive solutions and quick sorting, and comments on greedy algorithm elements. The book also introduces the verification of the correctness of the strongly connected subgraph algorithm and the NP completeness of the Hamilton circuit and subset sum problem. The book provides more than 900 exercise questions, thinking questions and more specific case studies. This book is rich in content and is a practical textbook for undergraduate data framework courses and graduate algorithm courses. This book is also a mathematical reference book or engineering practice manual on the desk in the reader's industry career. Table of Contents Part I Introduction to Basic Knowledge Chapter 1 Effect of Algorithms in Calculation 1.1 Algorithm 1.2 Algorithm as a Technology Chapter 2 Introduction to Algorithms 2.1 Insertion Sorting 2.2 Algorithm Analysis 2.3 Algorithm Scheme 2.3.1 Divided and Conquered Method 2.3.2 Divided and Conquered Method Analysis Chapter 3 Addition of Functions 3.1 Asymptotic Mark 3.2 Normative Mark and Common Functions Chapter 4 Regression 4.1 Substitution 4.2 Recursive Tree Method 4.3 Main Method 4.4 Confirmation of Main Theorem 4.4.1 Confirmation of Taking Positive Power 4.4.2 Rounding Function Number sum rounding function Chapter 5 Probability analysis and random algorithm 5.1 Recruitment question 5.2 Indicator random variable 5.3 Random algorithm 5.4 Further use of probability analysis and indicator random variable 5.4.1 Birthday paradox 5.4.2 Ball and box 5.4.3 Sequence Chapter 11 Hash List Chapter 12 Binary Search Tree Chapter 13 Red and Black Tree Chapter 14 Data Frame Extension Part 4 Introduction to High end Schemes and Analysis Techniques Chapter 15 Dynamic Schemes Chapter 16 Greedy Algorithms Chapter 17 Equal Sharing Analysis Part 5 Overview of High end Data Frames Chapter 18 B Tree Chapter 19 Binomial Stack Chapter 20 Fibonacci Stack Chapter 21 Data Framework on Disjoint Sets Part 6 Introduction to Graph Algorithms Chapter 22 Basic Algorithm of Graph Chapter 23 Minimum Spanning Tree Chapter 24 Single Source Shortest Path Chapter 25 Shortest Path between Each Pair of Item Points Chapter 26 Maximum Flow Part 7 Selected Introduction to Algorithm Research Problems Chapter 27 Sorting Network Chapter 28 Matrix Operation Chapter 29 Linear Scheme Chapter 30 Polynomial and Fast Fourier Transform Chapter 31 Algorithm of Related Number Theory Chapter 32 String Matching Chapter 33 Computational Geometry Chapter 34 NP Completeness Chapter 35 Approximate Algorithms Part 8 Appendix: Introduction to Basic Mathematical Knowledge A Sum B Set Discrete Mathematics Framework C Counting and Probability References
Introduction to Algorithms Second Edition. pdf)

[下载]15042882320.rar




上一篇:13.实现五子棋输赢算法
下一篇:Aprior算法_C#语言_频繁项目集的生成