TFX Trainer 组件未将模型导出到文件系统的问题
问题首先,我使用的是 TFX 0.21.2 版和 Tensorflow 2.1 版。
我建立了一个管道,主要以芝加哥出租车为例。执行 Trainer 组件时,我可以在日志中看到以下内容:
信息培训完成。模型写入 /root/airflow/tfx/pipelines/fish/Trainer/Model/9/serving_model_dir
检查上面的目录时,它是空的。我错过了什么?
这是我的 DAG 定义文件(忽略 import 语句):
_pipeline_name = 'fish'
_airflow_config = AirflowPipelineConfig(airflow_dag_config = {
'schedule_interval': None,
'start_date': datetime.datetime(2019, 1, 1),
})
_project_root = os.path.join(os.environ['HOME'], 'airflow')
_data_root = os.path.join(_project_root, 'data', 'fish_data')
_module_file = os.path.join(_project_root, 'dags', 'fishUtils.py')
_serving_model_dir = os.path.join(_project_root, 'serving_model', _pipeline_name)
_tfx_root = os.path.join(_project_root, 'tfx')
_pipeline_root = os.path.join(_tfx_root, 'pipelines', _pipeline_name)
_metadata_path = os.path.join(_tfx_root, 'metadata', _pipeline_name,
'metadata.db')
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text,
module_file: Text, serving_model_dir: Text,
metadata_path: Text,
direct_num_workers: int) -> pipeline.Pipeline:
examples = external_input(data_root)
example_gen = CsvExampleGen(input=examples)
statistics_gen = StatisticsGen(examples=example_gen.outputs['examples'])
infer_schema = SchemaGen(
statistics=statistics_gen.outputs['statistics'],
infer_feature_shape=False)
validate_stats = ExampleValidator(
statistics=statistics_gen.outputs['statistics'],
schema=infer_schema.outputs['schema'])
trainer = Trainer(
examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'],
module_file=_module_file, train_args= trainer_pb2.TrainArgs(num_steps=10000),
eval_args= trainer_pb2.EvalArgs(num_steps=5000))
model_validator = ModelValidator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'])
pusher = Pusher(
model=trainer.outputs['model'],
model_blessing=model_validator.outputs['blessing'],
push_destination=pusher_pb2.PushDestination(
filesystem=pusher_pb2.PushDestination.Filesystem(
base_directory=_serving_model_dir)))
return pipeline.Pipeline(
pipeline_name=_pipeline_name,
pipeline_root=_pipeline_root,
components=[
example_gen,
statistics_gen,
infer_schema,
validate_stats,
trainer,
model_validator,
pusher],
enable_cache=True,
metadata_connection_config=metadata.sqlite_metadata_connection_config(
metadata_path),
beam_pipeline_args=['--direct_num_workers=%d' % direct_num_workers]
)
runner = AirflowDagRunner(config = _airflow_config)
DAG = runner.run(
_create_pipeline(
pipeline_name=_pipeline_name,
pipeline_root=_pipeline_root,
data_root=_data_root,
module_file=_module_file,
serving_model_dir=_serving_model_dir,
metadata_path=_metadata_path,
# 0 means auto-detect based on on the number of CPUs available during
# execution time.
direct_num_workers=0))
这是我的模块文件:
_DENSE_FLOAT_FEATURE_KEYS = ['length']
real_valued_columns =
def _eval_input_receiver_fn():
serialized_tf_example = tf.compat.v1.placeholder(
dtype=tf.string, shape=, name='input_example_tensor')
features = tf.io.parse_example(
serialized=serialized_tf_example,
features={
'length': tf.io.FixedLenFeature([], tf.float32),
'label': tf.io.FixedLenFeature([], tf.int64),
})
receiver_tensors = {'examples': serialized_tf_example}
return tfma.export.EvalInputReceiver(
features={'length' : features['length']},
receiver_tensors=receiver_tensors,
labels= features['label'],
)
def parser(serialized_example):
features = tf.io.parse_single_example(
serialized_example,
features={
'length': tf.io.FixedLenFeature([], tf.float32),
'label': tf.io.FixedLenFeature([], tf.int64),
})
return ({'length' : features['length']}, features['label'])
def _input_fn(filenames):
# TFRecordDataset doesn't directly accept paths with wildcards
filenames = tf.data.Dataset.list_files(filenames)
dataset = tf.data.TFRecordDataset(filenames, 'GZIP')
dataset = dataset.map(parser)
dataset = dataset.shuffle(2000)
dataset = dataset.batch(40)
dataset = dataset.repeat(10)
return dataset
def trainer_fn(trainer_fn_args, schema):
estimator = tf.estimator.LinearClassifier(feature_columns=real_valued_columns)
train_input_fn = lambda: _input_fn(trainer_fn_args.train_files)
train_spec = tf.estimator.TrainSpec(
train_input_fn,
max_steps=trainer_fn_args.train_steps)
eval_input_fn = lambda: _input_fn(trainer_fn_args.eval_files)
eval_spec = tf.estimator.EvalSpec(
eval_input_fn,
steps=trainer_fn_args.eval_steps,
name='fish-eval')
receiver_fn = lambda: _eval_input_receiver_fn()
return {
'estimator': estimator,
'train_spec': train_spec,
'eval_spec': eval_spec,
'eval_input_receiver_fn': receiver_fn
}
在此先感谢您的帮助!
回答
为遇到与我相同问题的任何人发布解决方案。
模型没有写入文件系统的原因是估计器需要一个配置参数来知道在哪里写入模型。
以下对 trainer_fn 函数的修改应该可以解决问题。
run_config = tf.estimator.RunConfig(save_checkpoints_steps=999, keep_checkpoint_max=1)
run_config = run_config.replace(model_dir=trainer_fn_args.serving_model_dir)
estimator=tf.estimator.LinearClassifier(feature_columns=real_valued_columns,config=run_config)
页:
[1]